Power Optimization of System-Level Address Buses
based on Software Profiling

W. Fornaciari * §

¥ Politecnico di Milano
Dip. di Elettronica e Informazione
Milano, ITALY 20133

ABSTRACT

The paper aims at defining a methodology for the optimiza-
tion of the switching power related to the processor-to mem-
ory communication on system-level buses. First, a method-~
ology to profile the switching activity related to system-level
buses has been defined, based on the tracing of benchmark
programs running on the Sun SPARC V8 architecture. The
bus traces have been analyzed to identify temporal cor-
relations between consecutive patterns. Second, a frame-
work has been set up for the design of high-performance en-
coder/decoder architectures to reduce the transition activity
of the system-level buses. Novel bus encoding schemes have
been proposed, whose performance has been compared with
the most widely adopted power-oriented encodings. The ex-
perimental results have shown that the proposed encoding
techniques provide an average reduction in transition activ-
ity up to 74.11% over binary encoding for instruction address
streams. The results indicate the suitability of the proposed
techniques for high-capacitance wide buses, for which the
power saving due to the transition activity reduction is not
offset by the extra power dissipation introduced in the sys-
tem by the encoding/decoding logic.

1. INTRODUCTION

In microprocessor-based systems, significant power savings
can be achieved through the reduction of the transition ac-
tivity of the system buses. The power consumption due to
the transition activity of the I/O pads in a VLSI circuit
ranges from 10% to 80% of the overall power with a typical
value of 50% for circuits optimized for low-power [1]. Several
encoding techniques have been recently proposed in litera-
ture to reduce the switching activity of high capacitance bus
lines. In [2], the authors have proposed a redundant encod-
ing scheme, the Bus-Invert code, which is suitable to trans-
mit patterns randomly distributed in time, such as for data
buses. The approach introduces delay overhead due to the
majority voter included in the encoder. Concerning address
buses, for which sequential addressing usually dominates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 2000 San Diego CAUSA

Copyright ACM 2000 1-58113-268-9/00/5...$5.00

M. Polentarutti

29

D. Sciuto*$ C. Silvano * §

§ CEFRIEL
Milano, ITALY 20133

the Gray code has been proposed in [4] and [5]. In ([6], [7]),
a redundant encoding scheme, the T0 code, has been intro-
duced, that avoids the transfer of consecutive addresses on
the bus by using a redundant line, INC, to transfer to the
receiving sub-system the information on the sequentiality of
the addresses. For infinite streams of consecutive addresses,
the T0 code enjoys the property of zero transitions occur-
ring on the bus, while the Gray addressing requires one bit
switching per each pair of consecutive patterns.

Other encoding techniques at the system-level have been re-
viewed in [3], while a general encoding/decoding framework
aiming at reducing the transition activity has been recently
proposed in [1]. Although most of the known low-power en-
coding techniques can be implemented by using this frame-
work, the critical path to transmit the information on the
bus can have a significant impact on the system-level per-
formance. Other approaches consist of directly changing the
way the information is stored in memory, so that the address
streams have already low transition activity [8].

In this scenario, we propose a design framework to simu-
late the application of low-power techniques to system-level
buses in microprocessor-based architectures. The most rel-
evant features of the proposed design methodology are:

e The target system architecture is quite general and
models the HW/SW communication on system-level
buses in terms of the main parameters that affect the
switching power of the system: power supply, frequency,
transition activity and capacitive load;

e The proposed encoding/decoding architecture imple-
ments different classes of bus encoding techniques and
represents a timing optimization of the architecure pro-
posed in [1]: the critical path delay has been minimized
to reduce the latency of the bus accesses.

The methodology enables the profiling of the software
execution in terms of transition activity on system-
level buses: real bus tracing, derived from the execu-
tion of several application programs can be analyzed;

o Correlation metrics have been defined to characterize
the streams transmitted on the buses during HW/SW
communication with the purpose of identifying the en-
coding technique which best fits to each target appli-
cation.

e To further improve the transition activity on system-
level buses, novel encoding techniques have been de-
fined by extending the capabilities of previous low-
power codes or by combining the previous ones. The
proposed encoding techniques are suitable for address
buses, characterized by high locality of references.

I-cache
D-cache

[

Interconnection Network

§

Figure 1: The target system architecture.

o Experiments have been carried out on real bus streams
generated by tracing benchmark programs on the Sun
SPARC V8 architecture. The results have shown an
average reduction in transition activity up to 74.11%
over binary encoding for instruction address streams.

e The implementation of the encoding/decoding archi-
tecture demonstrated how, for high-capacitance buses,
the power saving due to the transition activity reduc-
tion is not offset by the power overhead introduced by
the encoding/decoding logic.

The paper is organized as follows. In Section 2, we de-
scribe the target system architecture, the proposed high-
performance eéncoding/decoding architecture, and the novel
power-oriented bus encoding techniques. The methodology
used to profile the software execution is described in Section
3 along with the correlation metrics. The experimental re-
sults in terms of both transition activity and power savings
have been presented in Section 4. Finally, some conclud-
ing remarks and future development have been reported in
Section 5.

2. TARGET SYSTEM ARCHITECTURE

A power-oriented methodology operating at the system-level
is mandatory for the HW/SW architectural exploration dur-
ing the first phases of the design flow. The methodology
should be tightly related to the characteristics of the sys-
tem architecture, mainly in terms of the target processors,
the memory sub-system, the system-level buses and the co-
Processors.

Figure 1 shows the block diagram of our target system ar-
chitecture, which is a shared memory multi-processor sys-
tem that can be implemented by using either the System-
On-a-Chip approach or the multi-chip approach. The sys-
tem includes one or more processors, the instruction caches
(I-caches), the data caches (D-caches), the memory con-
troller, the main memory, the I/O controllers, the periph-
eral units, and the co-processors to support specific appli-
cations (such as MPEG encoding). All these basic blocks
are connected through address, data and control buses im-
plemented by using different topologies. Given the target
architecture, our main focus is to investigate the HW/SW
communication either on the sub-system-level buses, such
as the processor-to-cache buses (which have been coloured
in dark grey in Figure 1) or on the system-level buses. At
these interfaces, we introduce a Bus Interface (BI) to model

30

@

Figure 2: The power-oriented bus interfaces.

and optimize the four parameters which impact the switch-
ing power of the system: power supply, frequency, switching
activity and capacitive load. In Figure 2, we propose four
architectures to implement the BI module. These archi-
tectures model respectively voltage scaling (a), frequency
multiplier/demultiplier (b), bus encoding/decoding to mod-
ify the transition activity of buses (c), and bus buffering to
decouple capacitive loads (d).

2.1 Encoder/Decoder Architecture

A general framework for low-power bus encoding schemes
has been recently proposed in [1}. The generic architecture
can be specialized by using different alternatives for the in-
ternal decorrelating functions to derive most of the known
low-power encoding techniques. However, the critical path
to transmit the information on the bus can have a signifi-
cant impact on the system-level performance. In fact, the
critical path delay of the encoder is through the functions
f1, f2, and zor, where fy can implement either a zor or a
dbm logic block, while f; can implement the identity, inv,
vbm, or pbm functions.
Starting from the architecure in [1], we propose an encoder/
decoder (Encdec) which maintains wide generality while min-
imizing the critical path delay to reduce bus latency. The
general encoder section of the Encdec is shown in Figure 3.
The encoder receives as input b®)| the information value at
time ¢, and it generates BY, the value on the encoded bus
lines at time ¢. It consists of registers for b ") and B®~1),
and three combinational logic blocks:
e a predictor block P, that generates a prediction b
of the current value of b®*) based on the past value
(t-1),
b ' BY = p (bt Q)

e a decorrelator block D, that decorrelates the input b®):
et = p (b(t)”g(‘)) (2)

e a selector block S, that select among its inputs b(®,
B¢-D and e®.

The amount of hardware in the encoding functions has been
kept as small as possible, and the critical path delay (through
the D and S blocks) has been minimized to reduce the la-
tency of bus accesses. A pass-gate dedicated implementation
has been devised for both logic blocks on the critical path.
As an example, for the S block, the muz function has been
implemented by two pass-gates and one inverter, while the

-

L s

B ®

e ® A

Figure 3: The encoder section of the proposed Encdec architecture.

Encoding P D S Redundancy |
TO Inc Xor Mux Y
Bus-Invert Id. Xor Inv. Y
TO-Bus-Invert | Inc./Id. Xor Mux/Inv. Y
T0-Xor Inc. Xor Xor N
Offset Td. Diff. E Y
Offset-Xor 1d. Diff. Xor Y
T0-Offset Inc./Id. | Xor/Diff. Mux Y
T0-Xor-Offset | Inc./Id. | Xor/Diff. Xor Y

Table 1: Mapping of different encoding schemes to the Encdec ar-
chitecture. Note the registers on B(t) are missing for Offset code.

zor function requires two pass-gates and two inverters. In
both cases, the critical path through the S block is given by
the propagation delay through one inverter and one pass-
gate.

Table 1 summarizes the different implementations of the en-
coding functions P, D, and S corresponding to different code
classes. The first three rows of Table 1 show codes already
present in literature, while the following five rows represent
newly derived codes.

2.2 Low-Power Encoding Techniques

In this section, we introduce novel encoding techniques to re-
duce the switching activity on high-performance wide buses,
that can be implemented by using the proposed Encdec ar-
chitecture. The codes have been derived by extending the
capabilities of previous codes or by simply combining previ-
ous codes.

In the T0-Xor code, we extend the capabilities of the T0 code
proposed in ([6], [7]) by combining it with a zor function:

o _ [P o®m* Y is)]eBtY t>0
B =1q p®»

tZo ©)

where B(® is the value on the encoded bus lines at time ¢,
b® is the bus value at time ¢ and S is the Stride. The pres-
ence of the decorrelating zor function enables us to avoid
the introduction of the redundant line INC to the bus, nec-
essary for the T0 code. Notice that the T0-Xor code can
also be derived from the architecture proposed in [1], where
it has been indicated as Inc-Xor code.

In the Offset code, we transmit on the bus the difference
between the current value of b(*) and the previous value
b~*). When the bus values transmitted on the buses are
highly correlated, the value on the encoded bus lines B® is
reduced, and it is kept constant for in-sequence data.

In the Offset-Xor code, we first compute the difference (b
- b*~1), then we execute a zor function to decorrelate the

encoded bus lines:

B® _{ (t(:‘;’ -bt") B t>0
=1 e

=0 4)

31

In the T0-Offset code, we extend the capabilities of the T0
code by adopting the T'0 scheme for in-sequence bus values,
while for the out-of-sequence bus values we use the Offset
code, since the encoding of the difference (b(® - b{=1) could
imply less transitions on the bus lines with respect to the
binary encoding. The T0-Xor-Offset code can be derived by
combining the T0-Xor scheme for in-sequence bus values,
while for out-of-sequence bus values we adopt the Offset
code. In the T0 code with variable stride, namely T0-Var
code, the Stride between consecutive patterns can be para-
metric. To represent the most frequent distances occurring
between consecutive addresses, we use n values of the Stride
S1,8Ss,...,Sn, 50 we need [og2(Sn) redundant lines. In the
reduced Bus Invert code, namely Red-BI code, we exploit the
fact that the most significant bits of the system bus present
a less significant transition activity with respect to the least
significant bits. Thus we reduce the threshold, after which
we invert the bus value, to a number less than N/2.

3. SOFTWARE EXECUTION PROFILING

A software tool, MAYA, has been developed to trace the
transition activity of system-level buses during the execu-
tion of benchmark programs, to analyze the bus traces in
terms of correlation metrics, and to implement bus encod-
ing techniques. The tracing and analysis capabilities of the
tool have been maintained independent to each other, to al-
low the acquisition of bus sequences obtained by different
tracing programs. In the current version of MAYA, we in-
tegrate the Shade-Spix tool [9], which combines an efficient
instruction-set simulator with a flexible tracer of the execu-
tion of application programs. The current version of Shade
runs on Sun SPARC systems and it simulates the SPARC
(Version 8 and 9) and MIPS I instructions sets. The results
reported in this paper have been carried out on the Sun
SPARC V8 architecture.

The structure of the M.AY A tool is mainly composed of the
internal tracer, the external tracer and the analyzer. The
internal and external tracers enable two different data ac-
quisition modes. The internal tracer is based on the Shade
tool to profile data streams derived from the execution of
real application programs on the target architecture, while
the external tracer receives as input a user-defined external
sequence with given characteristics in terms of data corre-
lation. Due to the length of the information streams to be
processed (in the order of millions of patterns), the internal
tracer provides a single pattern at a time to the analyzer.
The analyzer evaluates on-the-fly the correlation metrics,
implements the encoding techniques, and calculates the bus
transition activity.

3.1 Correlation Metrics

The correlation metrics we introduce analyze the effects of
the principle of locality on the bus streams derived by the
software profiling. Being B the value on the bus lines at
time ¢, and S the Stride, the consecutive addresses satisfy
the condition:

B® =B¢"V4s (8)

Given a stream composed of N -+ 1 values of bus lines:
{B(O),B“),~~ ,B(N)}, we define the metric P, as the

(@)

®)

© @ O

Figure 4: Given P}, , the consecutive addresses in the stream can
be distributed in many ways.

number of in-sequence addresses over N:

N
ZBB(‘),B(‘—1)+S
t=1

Paeq = N

()
where § is the function delta of Kroeneker. Note that the
value of P,eq (where 0 < Pyeq < 1) multiplied by 100 repre-
sents the percentage of in-sequence addresses. For a given
value P, the consecutive addresses in the stream can be
distributed in many ways, as shown in Figure 4. The ex-
treme cases are: (i) the in-sequence addresses are grouped
in Py, sets of two consecutive values; (ii) the in-sequence
addresses are grouped in a single set of (N P;.,) consecutive
addresses. We define the { metric to take into consideration
the distribution of consecutive address in the stream:

N

3 Onit-1) pt-2) 451 = 5(0) pe-1)45)
- t=2

¢ N

(M

In practice, the valué of the { metric is incremented by 1
each time we exit from a sequence of consecutive addresses,
thus when the condition C is satisfied:

B % (BC-1 1 §)

C= { BU-D = (B(-D 1 §) (®)

The values of ¢ can vary from % (case i) to Pr, (case
ii). Given Py, the cases (a), (b) and (c) of Figure 4 pro-
vide different values for ¢, while the cases (c), (d), and
(e) provides the same values for (. The L metric (where
1 < L < (NP;,,)) represents the average length of the in-
sequence sets:

L= f‘cﬂ 9)
4. EXPERIMENTAL RESULTS

Aim of this section is to evaluate and to compare the perfor-
mance of the proposed codes in terms of bus switching activ-
ity and power dissipation. The set of benchmark programs
used to compare the bus encoding techniques has been sum-
marized in Table 2, as well as the main characteristics of the
selected streams. For each benchmark program, we report
the stream length, the percentage of in-sequence addresses,
¢, and L for both data and instruction address streams.

4.1 Transition Activity Results

To evaluate the effectiveness of the proposed encodings, a
comparison between their transition activity and the tran-
sition activity of other encoding schemes in literature, with
respect to the transition activity of the binary encoding has
been performed. The results have been derived for both the
instruction address streams and the data address streams.

32

Globally, none of the analyzed codes is suitable for both
instruction and data address streams due to the peculiar
characteristics of the streams. The comparison results show
that, the T0-Xor and Red-BI codes are the most effective in
terms of transitions count for instruction and data address
streams, respectively.

Table 3 reports the percentage of transition savings with
respect to binary encoding for instruction address streams
(in particular, the last row shows the percentage saving of
each code averaged over the whole set of benchmarks). Be-
ing high the percentage of in-sequence addresses, the savings
provided by the T0-based codes as well as the Offset-based
codes are remarkable with respect to binary. On the con-
trary, the BI-based codes do not provide any advantage over
binary. Better results are given by the irredundant T0-Xor
code (74.11%), which outperforms both the other irredun-
dant schemes (Offset and Offset-Xor) and the redundant
schemes (70, T0-BI, T0-Offset, and T0-Var). The irredun-
dant Offset and Offset-Xor codes present significant advan-
tages (56.39% and 41.35%, respectively). The redundant
T0-based codes offer advantages in the order of 60% versus
the binary code. Among them, the results are in favour of
the T0-Var code (64.18% saving), however the simple T0
code (providing 61.64% saving) represents the most suitable
solution, due to the reduced cost in terms of redundancy
and encoder/decoder logic.

Among the set of benchmark programs, the instruction ad-
dress streams corresponding to gzip and quicksort present
the highest values of the P, and L correlation metrics (see
Table 2). If we consider each column of Table 3 correspond-
ing to T'0-based and Offset-based codes (which better ex-
ploit address locality), we can observe how the percentage
transition savings corresponding to gzip and quicksort are
higher than the average value over the benchmark set, thus
proving the effectiveness of the proposed metrics.

As expected, the T0-based codes, as well as the Offset-based
codes, do not show significant transition savings (at most
3.6%) for data address streams (the complete results are not
reported here for space reason). The redundant BI-based
codes are the most suitable for data address buses. Among
them, the Red-BI and T0-BI encodings (which respectively
provide 15.55% and 10.05% of saving) outperform the simple
BI encoding (9.6%).

4.2 Power Dissipation Results

Aim of this paragraph is to evaluate whether the power sav-
ings achieved through switching activity reduction is offset
by the circuitry required to implement the encoding/decoding
functions. We analyzed the power consumption results when
the encoding scheme has been used for both on-chip and off-
chip buses. The proposed high-performance Encdec archi-
tecture has been used to implement the different codes by
using the 0.35 ¢ m and 3.3 V library supplied by ST Micro-
electronics. Power estimates have been obtained by using
Synopsys Design Power at the maximum clock frequency
achieved for each code implementation.

In this paper, we report the power consumption results for
different values of off-chip capacitances for the following
codes: Binary, T0, Offset, and T0-Xor. Two different imple-
mentations of the binary encoder have been considered: the
first one includes registers and pads at the interface, while
the second one includes pads only. The power consumption
results have been reported in Figure 5 for different values of
the bus capacitances (a single set of data has been plotted

Benchmark Comment Data Addresses Instruction Addresses
Length Pyeq 4 L Length Poeq
quicksort Sorting of 4096 integers in the range 0-255 1547779 | 10.87% | 0.09 | 1.21 4138810 | 90.26% | 0.10 9.03
date OS call providing date and time 189702 3.37% [0.08 | 1.12 820102 | 84.28% | 0.16 5.27
gcc gcc quicksort.c -0 quicksort 236544 3.50% | 0.02 [1.75 847654 | 83.48% | 0.17 4.91
gzip gzip maya.c (MAYA code) 3417970 3.72% | 0.03 | 1.24 10235521 | 91.63% | 0.08 | 11.45
go 80 19 5 (19x19 chess-board with 5 difficulty Tevel) | 219026182 1.03% | 0.01 | 1.03 | 957881788 | 89.46% | 0.11 8.13
hello Print "hello world’ 144898 2.72% [0.02 | 1.36 556686 | 84.82% | 0.15 5.65
Tatex latex comments.tex (MAYA code documentation) | 27762105 | 4.05% | 0.04 | 1.01 | 108026949 | 87.05% | 0.13 | 6.70
vi Editing of maya.c 967410 1.42% | 0.01 1.42 4844023 | 82.13% [0.18 4.56
ghostview ghostview comments.ps 2857389 4.93% | 0.03 | 1.64 12437226 | 83.95% | 0.16 5.25
xfig Graphical editor - 5256745 4.13% 10.03] 1.38 22028996 | 83.68% | 0.16 5.23
uncompress uncompress maya.c.Z 750585 7.74% | 0.08 | 0.97 2704119 | 87.36% | 0.13 6.72
Table 2: Description of the benchmark set
Benchmark TO [Bus-Invert | TO-BI[T0-Xor | Offset | Offset-Xor | T0-Offset | T0-Var [Red-BI
quicksort 67.3 0.0 67.3 83.1 73.1 45.8 75.2 72.1 0.0
date 58.3 0.0 55.9 71.2 51.7 40.3 59.2 60.5 0.0
gee 54.9 0.1 53.7 68.9 46.2 38.8 55.5 56.5 0.4
gzip 74.5 0.0 74.4 81.9 76.7 47.5 79.0 77.7 0.0
go 68.1 0.0 64.9 78.6 63.5 43.0 67.7 69.5 0.1
hello 59.1 0.0 59.1 72.2 53.8 41.0 60.5 60.9 0.0
latex 60.5 0.3 56.0 73.3 53.7 40.6 60.0 62.1 0.7
vi 52.7 0.2 51.2 65.0 39.6 39.6 51.0 54.0 0.6
ghost 57.8 0.0 56.4 71.6 50.2 39.0 57.4 62.0 0.0
xfig 59.5 0.0 56.6 70.4 47.5 36.4 58.8 61.5 0.2
uncompress 65.3 0.0 65.3 79.0 64.3 42.9 64.3 69.2 0.0
Average 61.64 0.056] 60.07] 74.11] 56.30 41.35 62.60] 64.18 0.18
Table 3: Instruction address streams: Percentage transition savings with respect to binary encoding for the benchmark set.
Bl R power consumption of system-level buses when the target
Mo — . system architecture includes multi-level cache memories and
~*Binary different bus topologies. The cache model considers any
120 +T0 cache configuration in terms of size, associativity, and cache
§,w - A P g S line size. Moreover, we are investigating system architec-
) set tures based on VLIW ASIP processor cores. The system-
B O] TTOXor [e level framework can be effectively adopted to appropriately
§ ﬂ configure the memory sub-system and system bus architec-
& ture from the power standpoint.
O T e T
6. REFERENCES
W1 e e {1] S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “A Coding Frame-
work for Low-Power Address and Data Busses,” IEEE Trans.
] On Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 2,
0 20 40 60 80 100 120 140 June 1999, pp. 212-221.
Capacitance [pF] [2] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-Power

Figure 5: Power dissipation vs. off-chip capacitances for several
encoding techniques.

for binary encoders). For each code scheme, a minimum ca-
pacitance value C exists for which the corresponding coding
"scheme results convenient with respect to binary encoding.
Table 4 summarizes the C values for the T0, Offset, and
T0-Xor schemes with respect to both binary encoders.

C T0 Offset | TO — Xor
Binary (regs) 10 pF [60 pF 40 pF
Binary (no regs) | 10 pF 70 pF 50 pF

Table 4: Minimum capacitances C for which the selected codes con-
sume less power than binary encoders.

5. FUTURE WORK

As future evolution of the work, we are devising a method-
ology to evaluate the benefits of encoding schemes on the

1/0,” IEEE Transactions on Very Large Scale Integration Sys-
tems, Vol. 3, No. 1, pp. 49-58, March 1995.

M. R. Stan, W. P. Burleson, “Low-Power Encodings for Global
Communication in CMOS VLSI,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 5, No. 4, pp. 444-
455, Dec. 1997.

C. L. Su, C. Y. Tsui, A. M. Despain, “Saving Power in the Con-
trol Path of Embedded Processors,” IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 24-30, Winter 1994.

H. Mehta, R. M. Owens, M. J. Irwin, “Some Issues in Gray Code
Addressing,” GLS-VLSI1-96: IEEE 6th Great Lakes Symposium
on VLSI, pp. 178-180, Ames, IA, March 1996.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for Address
Busses in Low-Power Microprocessor-Based Systems ,” GLS-
VLSI-97: IEEE 7Tth Great Lakes Symposium on VLSI, pp. 77-
82, Urbana, IL, March 1997.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, “Ad-
dress Bus Encoding Techniques for System-Level Power Opti-
mization,” DATE-98, pp. 861-866, Feb. 1998.

P. R. Panda, N. D. Dutt, “ Low-Power Memory Mapping
Through Reducing Address Bus Activity,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 3,
pp- 309-320, Sep. 1999.

B. Cmelik, D. Keppel, “ Shade: A Fast Instruction-Set Simulator
for Execution Profiling,” ACM SIGMETRICS Conference on
Measur t and Modeling of Computer Systems, 1994.

(3]

[4

6]

{7

[9

33

